

Remediation of an active Dry Cleaning Operation in an Urban Setting: Need to Manage Methane Production during Remedial Action

45th Annual Environmental Show of the South

Gatlinburg, TN – Wednesday April 20, 2016 4:00 to 4:20 pm

Jim Mueller (Provectus Environmental Products, Inc. - Freeport, IL) Eric Benson (Global Remediation Technologies, Inc. - Traverse City, MI) Jim Innes (Michigan DEQ RRD - Lansing, MI)

jim.mueller@provectusenv.com

Presentation Outline

- ◆ Introduction what is the problem with methane?
- ♦ How can we actively control methanogens?
 - Provect-CH4[®] Methane Inhibitor
 - Provect-IR® Solid, Antimethanogenic ISCR Reagent
 - Provect-IRM® Antimethanogenic ISCR/Heavy Metal Immobilization Reagent
 - EZVI-CH4™ Antimethanogenic Reagent for CHC DNAPL
 - AquaBlok-CH4[®]Antimethanogenic
- ◆ Case Studies dry cleaning sites in urban settings
 - Former site Georgia
 - Active site Michigan
 - Recently active site Wisconsin / New Mexico
- Summary and Conclusions

What is a Methanogen?

- Methanogens are microorganisms that produce methane
- Methanogens are Archaea (Woese and Fox, 1977) and hence, from a genetic perspective, *Dehalococcoides ethenogenes* are as different from methanogens as you are.
- Methanogens are often dominant as compared to DHC spp. and acetogens: averaging 2% to 15% of all soil microbes (Bates, et. al., 2011)
 - Even at biostimulated populations of DHC rising to >10⁸ cells/L Archaea populations can be orders of magnitude greater in number
- Methanogens are important members of synergistic, fickle anaerobic communities = we need some

Why Reduce ORP?

Figure 2. Oxidation-reduction potentials for selected microbial processes. (Modified from Stumm and Morgan, 1981.)

Example of Excessive Methane

What is The Problem With Methanogens?

◆ <u>Cost and Efficiency Issues</u>: Methanogens dominate anaerobic ecosystems and they can hinder dechlorination by competing for H₂ with dechlorinating bacteria (Yang and McCarty, 1998; yellow arrows modified by Provectus).

What is The Problem With Methanogens?

Cost and Efficiency Issues: Production of methane is a direct indication that hydrogen generated from the electron donor amendments was used by methanogens instead of the target microbes (e.g., Dehalococcoides spp.), substantially reducing application efficiency.

Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H₂ to Reduce Mole Analyte	Moles of H₂ Acceptor In Treatment Area
Contaminant Electron Acceptors (To E	nd Product Ethene)	······································		
Tetrachloroethene (PCE)	10.0	165.8	4	1,393
Trichloroethene (TCE)	7.0	131.4	3	364
cis-1,2-Dichloroethene (cDCE)	0.0	96.9	2	0
Vinyl Chloride (VC)	0.0	62.5	1	0
	1,757			
Native Electron Acceptors			,	
Dissolved Oxygen	9.0	32	2	199
Nitrate (as Nitrogen)	9.0	62	3	682
Sulfate	50.0	96.1	4	736
Fe ⁺² Formation from Fe ⁺³	20.0	55.8	0.5	63
Mn ⁺² Formation from Mn ⁺⁴	10.0	54.9	1	64
	***************************************	Baseline Geoc	hemistry Subtotal	1,745
Hydrogen Waste for Methane Formatio	n			
Methane Formed	20.0	16	4	1,769
Initial Treatment Area Hydrogen Usage				5,271

Even in a highly oxidized setting with relatively high total concentrations of PCE and TCE, generating just 20 mg/L of methane constitutes greater than 33% of the total amendment consumption based on moles of H₂.

- P
- Potential Health and Safety Issues (in Some Situations):
- ✓ Methane is explosive, with an LEL of 5% and an UEL of 15%.
- ✓ Induces vapor intrusion indoor air issues
- New and Emerging State and Federal Guidelines and Regulations

Yes – Methane is Important

Presentation Outline

- ◆ Introduction what is the problem with methane?
- How can we actively control methanogens?
 - Provect-CH4[®] Methane Inhibitor
 - Provect-IR® Solid, Antimethanogenic ISCR Reagent
 - Provect-IRM® Antimethanogenic ISCR/Heavy Metal Immobilization Reagent
 - EZVI-CH4™ Antimethanogenic Reagent for CHC DNAPL
 - AquaBlok-CH4[®]Antimethanogenic
- ◆ Case Studies dry cleaning sites in urban settings
 - Former site Georgia
 - Active site Michigan
 - Recently active site Wisconsin
- Summary and Conclusions

What is Red Yeast Rice (RYR) Extract?

 RYR extract is a substance extracted from rice that has been fermented with a yeast called *Monascus purpureus*.

- RYR extract contains a number of natural statins most importantly, Monacolin K - otherwise known as Lovastatin® / Lipitor® /etc.
- In addition to Monacolin K, RYR also contains 9 other statins, mono-unsaturated fatty acids, vitamins and other nutrients that will effectively stimulate anaerobic bacteria.
- RYR is used as a food coloring, food additive and preservative, and is widely consumed directly by humans.

Why Does RYR Produce Statins?

- Many microorganisms produce bioactive compounds that inhibit / regulate the growth and development of other organisms
- Example, antibiotics such as penicillin which is produced by mold of Penicillium genus

How Does RYR Control Methanogens?

- Bacteria cell walls contain peptidoglycan (murein).
- Methanogens cell walls contain pseudomurein.
- biosynthesized via activity similar to that of 3-hydroxyl-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which is a key enzyme in the cholesterol biosynthesis pathway in humans (Alberts et al., 1980).

What is Provect-CH4® Methane Inhibitor / ERD Supplement?

- Proprietary combination of Red Yeast Rice (RYR) extract specially selected for the environmental industry
- Cold water soluble powder that is safe and easy to handle
- Packaged and sold in 55.1 lb (25 kg) drums
- Used as an ERD Supplement; component to ABC-CH4®, Provect-IR® Provect-IRM®,EZVI-CH4™ and AquaGate®-CH4™
- Multiple patents issued / pending

Provect-IR® Solid, Antimethanogenic ISCR Reagent

- Multiple, Complex, Hydrophilic, Timed-Release organic carbon source (plant materials, Kelp, Ca Propionate) @ 390 g H donor / lb product
- 10% (wgt) Small (ave.10 μm) ZVI particles = 25 ft surface area / lb
- Integrated Vitamins, minerals and nutrients (yeast extract) specially selected for anaerobes
- Chemical oxygen scavenger to maintain ZVI

Package in 50 lb <u>safety</u> bags or 2,000 lb supersacs.

Carbon Fermentation + ZVI Corrosion = ISCR Multiple Reaction Mechanisms

<u>Production of organic acids (VFAs):</u> electron donors for reduction of COIs, O₂, NO₃, SO₄

 By preventing basification, reduces precipitate formation on ZVI surfaces to increase rate of iron corrosion /H₂ generation / reactivity

ZVI Reactions: H₂ and Fe⁺² and generation

Fe⁰
$$\rightarrow$$
 Fe²⁺ + 2e⁻
2H₂O \rightarrow 2H⁺ + 2OH⁻
2H⁺+ 2e⁻ \rightarrow H_{2(gas)}
R-Cl +H⁺ + 2e⁻ \rightarrow R-H + Cl⁻

ISCR = thermodynamic conditions for dechlorination:

- Combined oxygen consumption from carbon fermentation and iron oxidation → Strongly reduced environment (-250 to -500 mV)
- High electron/H⁺ pressure

ERD v. ISCR

(Modified from Brown, 2009)

Figure 2. Abiotic versus Biological Degradation Pattern for Chlorinated Solvents

Benefits of Provect-IR Antimethanogenic ISCR

More Efficient:

- Calculated minimum 30% more efficient use of hydrogen donor (Mueller et al, 2014)
- Allows for slower-growing acetogens and DHC-type microbes an opportunity to compete

Safer Remedial Actions:

 Elevated methane concentrations (>1,000 ppm) can exceed current and pending regulations of < 10 to <28 ppm in groundwater and/or 0.5% v/v methane in soil gas (e.g., 10% of the LEL) and/or indoor air regulations (methane is flammable between 5 and 15% v/v)

Other Potential Benefits:

- Avoids regulatory reporting (DOI?) and Contingency planning (AS/SVE gas)
- Minimizes potential for methylation of Hg and other heavy metals
- Minimizes potential for secondary COI issues

Presentation Outline

- ◆ Introduction what is the problem with methane?
- ♦ How can we actively control methanogens?
 - Provect-CH4[®] Methane Inhibitor
 - Provect-IR® Solid, Antimethanogenic ISCR Reagent
 - Provect-IRM® Antimethanogenic ISCR/Heavy Metal Immobilization Reagent
 - EZVI-CH4™ Antimethanogenic Reagent for CHC DNAPL
 - AquaBlok-CH4[®]Antimethanogenic
- Case Studies dry cleaning sites in urban settings
 - Former site Georgia
 - Active site Michigan
 - Recently active site Wisconsin / New Mexico

Summary and Conclusions

Former Dry Cleaner Site - Georgia

- Former Dry Cleaner Site near Atlanta, GA
 - ♦ Combinations of sodium lactate, ethyl lactate, emulsified oils, and ZVI added in 2004 (3), 2005 (4), 2006 (2) legal issues and delays 2013 (1)
 - ♦ Residual PCE, TCE and c-DCE concentrations required additional treatment
 - Excessive CH4 production previously noted
- Repeat ABC applications in July, 2014
 - 2,500 lbs (250 USG) ABC added via 3 DPT points proximal to MW-4
 - 2,500 lbs ABC (250 USG) + 37 lb Provect-CH4 added via 3 DPT points proximal to MW-207 (targeted 50 to 75 ppm within the PRB zone)

Well Head and Dissolved Gas Analysis (6 weeks post treatment)

Dissolved Gas Analysis (Method RSK 175) = 35% CH4 compared to MW-4

Well	Pre-injection		6 weeks Post-Injection		
Location	(ppm)		(ppm)		
	CH4	PCE	CH4	PCE	
MW-4	13.7	170	10.2		
MW-207s	11.8	1,200	4.2		

- Thermo/Foxboro TVA-1000B PID/FID Analyzer (PID sensitive to 2,000 ppm CH4; FID sensitive to 50,000 ppm CH4)
- LandTec GEM5000 Landfill Gas (LFG) Meter (infrared detector calibrated to 15% methane

Well Head Gas Analysis = Provect CH4 = >98% less CH4

Well	CH4 PID	CH4 FID	CH4 TGA	CO2	02	Balance (N)
Location	(ppm)	(ppm)	%	%	%	Est. %
MW-4	ABC Only					
0 min	297	>50,000	34.8	65.2	0.0	0.0
5 min	439	>50,000	35.6	61.0	0.2	3.2
MW-207s	Provect CH4 added					
0 min	82	Out of range	0.5	1.0	12.7	85.8
5 min	41	1,599	0.4	0.7	20.2	78.7

Active Dry Cleaner Site - Michigan

- Active Dry Cleaning Facility, southern Michigan
- Shallow groundwater 5 ft bgs confined by a clay layer at 12 ft bgs.
- ◆ PCE (max. 35 ppm) and TCE (max. 14 ppm) along with an accumulation of anaerobic catabolites cis 1,2-DCE (max. 25 ppm) and some VC (max. 4 ppm).
- Source area up to 70 ppm total CVOCs
- Groundwater migrates through a sandy aquifer into a damaged storm sewer.
- ▲ A sanitary sewer feeder from the active dry cleaner exacerbating the PCE migration problem by allowing warm water with potential contaminants and surfactants to enter the groundwater.
- ♦ Consultant and Agency selected Provect-IR over conventional ERD and ISCR reagents known to induce methane production.

Provect-IR™ - Field Pilot

Table 1. Summary of Provect-IR Applications for Field-Scale Pilot Test

Depth Interval		Amount of Prove	ct-IR Injected (lb)	
(ft bgs)	Point 1	Point 2	Point 3	Point 4
11 to 12	75	100	100	150
9 to 10	75	100	100	100
7 to 8	50	50	50	50
TOTAL	200	250	250	300

Figure 1. Pilot Test Area

Provect-IR – Field Study

P

Groundwater samples were acquired from four well locations MW-MP-2, MW-15-1S, MW-15-1D, and MW-15-2D at Day = 0, immediately after the injection event (Day=1), and 30, 60 and 90 days after injections were completed. Groundwater samples were collected utilizing low-flow sampling techniques and a DEQ-approved groundwater sampling method per RRD Operational Memorandum No. 2. The samples were properly preserved, packed and delivered to the DEQ Environmental Laboratory and analyzed for:

- pH Excessive fermentation can acidify aquifer and impede microbiological activity
- Turbidity Excessive turbidity may compromises data and indicate methane bubbles (above the saturation level)
- Water Level Influence during injection can give estimate of Radius of influence (ROI)
- DO/ORP Rapid reductions in redox should be observed in treatment zone giving ROI
- Dissolved gasses (CH₄, CO₂, ethane and ethene)
 Documents effectiveness
- VOCs Documents effectiveness and ROI along with mass loading
- Total and Dissolved metals to include iron, calcium, magnesium, manganese and Michigan 10 metals
- Anion Scan (chloride, sulfate, nitrate and nitrite)
- Total Organic Carbon TOC Indicates the presence of ISCR reagents and microbiological activity

Active Dry Cleaner – 90 Days

- Total CVOCs reduced by 62%
- No accumulation of DCE or VC as dead-end catabolites
- No groundwater methane during any sampling event (ranged from 1.7 mg/L at Time=0 to a high of 2.2 mg/L 60 days after Provect-IR additions.
- Soil gas methane baseline <20 ppmv to a high of 94 ppmv 30 days after the injection event (Day 60 and Day 90 <20 ppm)
- Full scale implementation March 2016

Well MW-MP-2 Source Area

Well MW-15-1S (shallow, 5 feet downgradient)

Day=0 Well MW-15-1D

Well MW-15-2D (deep, 20 feet downgradient)

Yes – Methane is Important

Recently Active Dry Cleaner - WI

Recently Active Dry Cleaner - WI

Recently Active Dry Cleaner - WI

100 g PCE will yield a plume 100 m x 100 m x 3m deep (no partitioning; n=0.2)

- Sump and drain had >55USG sludge >2% PCE
- **▶** > 7,000 g PCE
- 7,000 m plume potential

Large Plume Potential

Potential Savings – Large Dry Cleaning Superfund Site, New Mexico

http://www.epa.gov/region6/6sf/newmexico/grants/nm_grants_5yr_review_9-13.pdf,

[&]quot;Elevated methane levels have been observed around the ERD treatment areas with the potential for buildup beneath impervious surfaces' "secondary arsenic issues need to be addressed"

Item	Current	Potential	Savings (% / est \$)	
Injection Wells	550+	550+	0/0	
Substrate / event	15,000 USG EVO	11,000 USG EVO	30% / \$60,000	
Field Time / event	100%	80%		
	30 days @ 15k/d	24 days @15k/d	\$90,000 per event	
SAVINGS PER EVENT = \$150.000 x 3 injection events over time = \$450.000				

Estimates in Table were NOT reviewed or approved by design engineers andrepresent preliminary estimates as of June 4, 2015

So, is Methanogenesis Important?

- ✓ We never see problems
- My site is remote
- ✓ Our amendments don't make methane
- ✓ It's bad to stop methanogens
- Our clients don't worry about it
- We will just add more reagent

You decide

- Look at your own data
- Evaluate your site conditions VI concerns?
- Co-metabolism of CHCs is slow, and it mostly stalls at DCE/VC = worse than what you started with
- Experienced clients understand the value added
- ✓ What do your regulators say ...

Response

mostly because we never looked ignores efficiency issue then they are not working well it's beneficial to control them then YOU better worry about it... \$\$ not acceptable to our clients

Summary

- Natural statins in RYR extracts (as prepared) can be used to effectively and specifically control methanogenic activity
- The methane control technology has been integrated into various products designed for the environmental remediation industry
 - Provect-CH4® ERD Supplement / Methane Inhibitor
 - > ABC-CH4® Liquid, Antimethanogenic ERD Reagent
 - Provect-IR® Solid, Antimethanogenic ISCR Reagent
 - Provect-IRM® Antimethanogenic ISCR Reagent for Metals
 - AquaGate-CH4™ Antimethanogenic In Situ Sediment Capping Technology
 - **EZVI-CH4™** Antimethanogenic Source Area / CHC DNAPL Treatment
- The main benefit is improved performance = "better gas mileage"
- Other potential benefits relate to safety, regulatory compliance, and sustainability

Provectus Environmental Products

- Complimentary Site Evaluation
- Complimentary review of quarterly field performance data for 1 year with every project
- Laboratory Treatability Studies
- Turn-Key, Pay-for-Performance Contracting Options
- Project Specific Guarantees and Warranties

- USA (Illinois, Ohio, Pennsylvania, Louisiana)
- Australia, Brazil, China, Colombia, Italy, Singapore, Spain